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Epstein & Schiffer (1965): D,(a) is the only! domain with this property.
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Epstein & Schiffer (1965): D,(a) is the only! domain with this property.

domains
The cardioid, @ = {z+ 5 : z € D}: .
3

1 1
fFellQ = / fdA = Z£(0) + =£'(0).
0 2 2
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Mean value property:

feliDd(a) = fdA = f(a).

2
™r D, (a)

Epstein & Schiffer (1965): D,(a) is the only! domain with this property.

The cardioid, @ = {z+ 5 : z € D}: .
3

1 1
fFellQ = / fdA = Z£(0) + =£'(0).
0 2 2

™

Aharonov & Shapiro (1976): The cardioid is also unique.

'bounded & simply connected
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Quadrature identities

Mean value property:

feliDd(a) = fdA = f(a).

72 I (a)
Epstein & Schiffer (1965): D,(a) is the only! domain with this property.

The cardioid, @ = {z+ 5 : z € D}:

3

1 1
fFell(Q = W/QfdA:2f(0)+2f’(0).

Aharonov & Shapiro (1976): The cardioid is also unique.

These are examples of quadrature identities.

'bounded & simply connected
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Definition 1.1 (Quadrature domain)
We call a domain Q c C a quadrature domain if there exists h € Rat(Q) s.t.?

1 1
;/QfdA_% b Fw)h(w)cw

Vf € L1(Q). This is denoted by Q € QD(h). (we also assume oo ¢ 9RQ)

?Rat(Q) = space of rational functions analytic in Q°. (all poles are in Q)
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Quadrature domains

Definition 1.1 (Quadrature domain)

We call a domain Q c C a quadrature domain if there exists h € Rat(Q) s.t.?
1 1
—/ A= b F(w)h(w)dw
™JQ 2mi a0

Vf € L1(Q). This is denoted by Q € QD(h). (we also assume oo ¢ 9RQ)

Residue theorem (Q2 bounded) — quadrature domain <= quadrature identity:

1
5 P f(w)h(w)dw = > JRes (f(w)h(w ch £ (py).
082 poles of h, {px} g

Unbounded case is similar.

?Rat(Q) = space of rational functions analytic in Q°. (all poles are in Q)
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Quadrature domains

Definition 1.1 (Quadrature domain)

We call a domain Q c C a quadrature domain if there exists h € Rat(Q) s.t.?
1 1
—/ A= b F(w)h(w)dw
™JQ 2mi a0

Vf € L1(Q). This is denoted by Q € QD(h). (we also assume oo ¢ 9RQ)

Residue theorem (Q2 bounded) — quadrature domain <= quadrature identity:

1
= — (n )
ot P f(w)h(w)dw = ) WRegk f(w)h(w ch £ ().
poles of h, {px}

Unbounded case is similar.

Can also write 1 (n))
= | fdA = pu(f h Oh = 1)ts,y
© [ A= (), where = Bh =3 Gy~

kyj

?Rat(Q) = space of rational functions analytic in Q°. (all poles are in Q)
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Generalzed The complement of the deltoid is an unbounded quadrature domain,
5 2
domains Q={z+55:]z| >1} €QD (%)
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Unbounded QD Example: The deltoid

The complement of the deltoid is an unbounded quadrature domain,

Q:{z+ﬁ:\z|>l}€QD<W72>:

1 1
—/fdA:— F(w)L dw
™JQ 27 a0
1
= —f
'3

f(w)=Aw™" +Hhw™? + w >+

(fell = A=£L=0)
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Potential theoretic interpretation of QDs

Definition 1.2 (Cauchy transform)
For a Borel set Q C C, we denote the Cauchy transform of Q by C: C — C,
1 [ dA(¢)
Q - — —F,
CH(w) = 77/9 W€

C2 corresponds to the electric field due to a uniform charge distribution on €.
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Andren Graven FOT @ Borel set Q C C, we denote the Cauchy transform of Q by C**: C — C,
Classical CQ(W) _ l / dA(g)
™ Jo W — §

quadrature
domains

C2 corresponds to the electric field due to a uniform charge distribution on €.
Remark: Q € QD(h) <= C%=h in Q°.
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C9 corresponds to the electric field due to a uniform charge distribution on Q.
Remark: Q € QD(h) <= C%=h in Q°. e.g. the cardioid

cQ h c2_h



Potential theoretic interpretation of QDs

Caltech
Generalzed Definition 1.2 (Cauchy transform)
domains
Andren Graven FOT @ Borel set Q C C, we denote the Cauchy transform of Q by C**: C — C,
Classical CQ(W) _ l/ dA(é.)
™ Jo W — 5

quadrature
domains

C9 corresponds to the electric field due to a uniform charge distribution on Q.
Remark: Q € QD(h) <= C%=h in Q°. e.g. the cardioid

c2 h Cc2_h

1 = Oh corresponds to point charge distribution.
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3= denotes equality on the boundary.
! 1 / dA(&)

CQC(W) = lim
r—oo T QcND, w —E
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Generalized Remark: Q c Cis a QD iff it admits a Schwarz function S : Q — C.
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domains
such that S € M(Q) and?
S(w)=w

3= denotes equality on the boundary.

' C¥(w) = lim l/ dAE)

r—oo 7T QcND, w —E
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Schwarz function

Remark: Q c Cis a QD iff it admits a Schwarz function S : Q — C.

A S—function is a continuous map
5:CI(Q) - C
such that S € M(Q) and?
S(w)=w
Also,
S(w) = h(w) + C¥(w), weQ

(where C** is understood in terms of its Cauchy principal value)*

3= denotes equality on the boundary.

' C¥(w) = lim l/ dAE)

r—oo T QcND, w —E
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The Faber transform
Let Q C C be bounded and simply connected with Riemann map ¢ : D — €,

o(z) =fo+ fiz+ hz22+ -

Ca(X) = functions analytic in X, continuous up to 8X, and = 0 at co.



The Faber transform

Generalized

quadratire Let Q C C be bounded and simply connected with Riemann map ¢ : D — €,

domains
Andrew Graven @(Z) — fb + f]_Z + f222 + ..
quadrature The associated interior Faber transform ® is a linear iso Ca(D€) — Ca(2°),°
domains

1 f ! 1 f
o0 = f D L Tou
27i Jop p(z) — w 2ri Joq €—w
(V=9

Ca(X) = functions analytic in X, continuous up to 8X, and = 0 at co.



The Faber transform

Generalized

quadratire Let Q C C be bounded and simply connected with Riemann map ¢ : D — €,

domains
Andrew Graven @(Z) — fb + f]_Z + f222 + ..
quadrature The associated interior Faber transform ® is a linear iso Ca(D€) — Ca(2°),°
domains

1 f ! 1 f
o0 = f D L Tou
27i Jop p(z) — w 2ri Joq €—w
(=9

The definition of the exterior Faber transform is analogous.

Ca(X) = functions analytic in X, continuous up to 8X, and = 0 at co.
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The Faber transform

Let Q C C be bounded and simply connected with Riemann map ¢ : D — €,
o(z) =fo+ fiz+ hz22+ -
The associated interior Faber transform ® is a linear iso Ca(D€) — Ca(2°),°

L1 f@RE), 1 [ fou®
| Ou()w) =5 DO — g T
(W =91

The definition of the exterior Faber transform is analogous.

Note: the Faber transform preserves polynomials and rational functions, e.g.

1 /
e <z — Zo> (w) = WQD(ZO()ZOy Fn=®,(z") (nth Faber polynomial)

Logarithms are also preserved.

Ca(X) = functions analytic in X, continuous up to 8X, and = 0 at co.
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If Q € QD(h) is s.c, with Riemann map ¢, then ¢ is rational and®

o ()

Chang & Makarov (2013)

—— finite-dimensional system of algebraic equations relating ¢ and h.
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The Faber transform method

If Q € QD(h) is s.c, with Riemann map ¢, then ¢ is rational and®

h= o, (go#> Chang & Makarov (2013)

—— finite-dimensional system of algebraic equations relating ¢ and h.

Example: Q € QD (Z}’Zl (W_CijWO)J is bounded (wlog assume ¢(0) = wp),




The Faber transform method

Cenerazed If Q € QD(h) is s.c, with Riemann map ¢, then ¢ is rational and®

domains
Andrew Graven h= (DSD (QO#> Chang & Makarov (2013)
qcl‘fjjj;j‘ure —— finite-dimensional system of algebraic equations relating ¢ and h.
fomains Example: Q € QD (Z}’Zl (W_CijWO)J is bounded (wlog assume ¢(0) = wyp),

Z(W_WO) =, () (w)

Jj=




The Faber transform method

Cenerazed If Q € QD(h) is s.c, with Riemann map ¢, then ¢ is rational and®
domains
Andrew Graven h= (DSD (QO#> Chang & Makarov (2013)
e e —— finite-dimensional system of algebraic equations relating ¢ and h.
fomains Example: Q € QD (Z}’Zl (W_CijWO)J is bounded (wlog assume ¢(0) = wyp),
n n
G -1 G
.:(D(#)W — zZ)=w+ & ~ z
;(W—Wo)f ' ¥ ( ) 90( ) © J_ZI(W_WO)J ( )




The Faber transform method

Cenerazed If Q € QD(h) is s.c, with Riemann map ¢, then ¢ is rational and®
domains
Andrew Graven h= (DSD (QO#> Chang & Makarov (2013)
qcl‘fjjj;j‘ure —— finite-dimensional system of algebraic equations relating ¢ and h.
domains Example: Q € QD (Zj 1 W) is bounded (wlog assume ¢(0) = wy),
n n
G -1 G
—=9¢ (go#) w) = p(z2)=w+ & —t z
2w —woy ~ %o (P ) (2) ANl ey @
j= j=
= o(z —W0+Z ,—Wo—i—Zasz




The Faber transform method

Cenerazed If Q € QD(h) is s.c, with Riemann map ¢, then ¢ is rational and®
domains
Andrew Graven h= (DSD (QO#> Chang & Makarov (2013)
e e —— finite-dimensional system of algebraic equations relating ¢ and h.
domains Example: Q € QD (Zj 1 (Wciw),> is bounded (wlog assume ¢(0) = wy),
n n
G -1 G
.:(D(#)W — zZ)=w+ & ~ z
;(W_WO), o (7)) (W) = ¢l2) ; J._Zl(w—ww (2)

= o(z _W0+Z 7.—Wo+ZOéJZJ

n n

E : ¢ —_ Zi _j qj o, @)
= 7:(1) . J E

o (=) ’ W0+j—1 s 7 (w—wo)
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Definition 2.1 (Abelian quadrature domain)

We call a bounded domain 2 C C an Abelian quadrature domain if there exists
h € Rat(Q),” (h = r + L for some r € Rat(Q) and el € Rat(Q)) such that

1 1
= /Q A= 5’29 F(w)h(w)dw.

VF € L1(Q). This is denoted by Q € QD(h).

"h € Rat(Q) <= his analytic in Q° with h" € Rat(Q)
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Abelian QDs

Definition 2.1 (Abelian quadrature domain)

We call a bounded domain 2 C C an Abelian quadrature domain if there exists
h € Rat(Q),” (h = r + L for some r € Rat(Q) and el € Rat(Q)) such that

1 1
= /Q A= 5’29 F(w)h(w)dw.

VF € L1(Q). This is denoted by Q € QD(h).

Residue theorem:

1 bj
F(w)h(w)dw = 3" 6 f ) (pe) — Zaj/ F(w)dw
K i e

2mi o0

(where the aj, b; are the pairs of branch points of L)

"h € Rat(Q) <= his analytic in Q° with h’ € Rat(Q)
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Abelian QDs

Definition 2.1 (Abelian quadrature domain)

We call a bounded domain 2 C C an Abelian quadrature domain if there exists
h € Rat(Q),” (h = r + L for some r € Rat(Q) and el € Rat(Q)) such that
1

= /Q fdA = % féﬂ f(w)h(w)dw.

VF € L1(Q). This is denoted by Q € QD(h).

Residue theorem:

1 bj
F(w)h(w)dw = 3" 6 f ) (pe) — Zaj/ F(w)dw
K i e

2mi o0

(where the aj, b; are the pairs of branch points of L)

Remark: The Faber transform formula also applies to Abelian QDs.

"h € Rat(Q) <= his analytic in Q° with h’ € Rat(Q)
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Generslized The following ellipse-like region is an AQD:

quadrature

domains w 2 . W+ 2
Andrew Graven Q == {W S (C . ‘tanh (E)’ < tanh (1)} e QD (ln (m))

Classical
quadrature
domains

Abelian
quadrature
domains
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quadrature

domains

Future work

1 1 w+ 2 2
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Definition 3.1 (Weighted quadrature domain)

We call a domain Q  C a weighted quadrature domain wrt the weight
p: 2 =Ry if 3he Rat(Q) s.t

1 1
= | fpdA=— f(w)h
77/9 pd. i ygﬂ (w)h(w)dw

Vf € LY(Q; p). This is denoted by Q € QD,(h).
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Weighted quadrature domains

Definition 3.1 (Weighted quadrature domain)

We call a domain Q  C a weighted quadrature domain wrt the weight
p: 2 =Ry if 3he Rat(Q) s.t

1 1
= | fpdA=— f(w)h
77/9 pd. i ygﬂ (w)h(w)dw

Vf € LY(Q; p). This is denoted by Q € QD,(h).
Example: if o(z) = aze®® ' (0 < a< 1), then Q = o(D~) € QD) -2(1)

(Q is unbounded component)
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Generalized Recall that if Q € QD(h) (bounded, s.c.), then h = ®,(¢*).8 This generalizes to

quadrature

domains certain classes of weighted QDs.
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If Q € QD,(h) is bounded and s.c, with p = |R|2 = 28 for R € Rat and
00,0 ¢ R'(), then

h(w) = &, (R 0 4(2)(Ro9)*(2)) (w)
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If Q € QD,(h) is bounded and s.c, with p = |R|2 = 28 for R € Rat and
00,0 ¢ R'(), then

h(w) = &, (R 0 4(2)(Ro9)*(2)) (w)
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Weighted Faber transform formula

Generalized Recall that if Q € QD(h) (bounded, s.c.), then h = ®,(¢*).8 This generalizes to
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domains certain classes of weighted QDs.

Andrew Graven
If Q € QD,(h) is bounded and s.c, with p = |R|2 = 28 for R € Rat and
00,0 ¢ R'(), then

h(w) = &, (R 0 4(2)(Ro9)*(2)) (w)

Weighted
quadrature

domains And

Rop(z) = Rop(0)+ ! (IQ,) ’ (2)

Remark 1: = R oy is a rational function.




Weighted Faber transform formula

Generalized Recall that if Q € QD(h) (bounded, s.c.), then h = ®,(¢*).8 This generalizes to

quadrature

domains certain classes of weighted QDs.
Andrew Graven
If Q € QD,(h) is bounded and s.c, with p = |R|2 = 28 for R € Rat and
00,0 ¢ R'(R2), then

h(w) = &, (R 0 4(2)(Ro9)*(2)) (w)

Weighted
quadrature

domains And

Ro(z) = Ro g(0) + &1 (R,)# (2)

Remark 1: = R oy is a rational function.

Remark 2: generalizes nicely to unbounded domains and those with 0,00 € R'(Q).

8p%(2) = p(z 1)
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*wlog taking ¢(0) = wo, ¢’(0) >0
see [Dragnev, Legg & Saff (2022)] for a similar result
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Faber transform method example

w—wy

If Qe QD|R/‘2 <L> is bounded and s.c. with, ¢ > 0, wy € C “nice”, then®

#
Rop(z) = Rop(0) + &7 <(W_W‘;)R/(W)> (2)

*wlog taking ¢(0) = wo, ¢’(0) >0
see [Dragnev, Legg & Saff (2022)] for a similar result
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Faber transform method example

w—wy

If Qe QD|R/‘2 <L> is bounded and s.c. with, ¢ > 0, wy € C “nice”, then®

Cc

#
Rop(z) = Roy(0) + ¢;1 <(W_W0)R/(W)> (2)

_ R'(w) — R'(w)

1

c 1
= R(wp) + ot (
(o) R'(wo) 7 \w—wo

*wlog taking ¢(0) = wo, ¢’(0) >0
Ysee [Dragnev, Legg & Saff (2022)] for a similar result

w — wWp

R'(w)

)#(z>
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Bt If Q € QDgrp2 (ﬁ) is bounded and s.c. with, ¢ >0, wg € C “nice”, then®
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Andrew Graven

#
Rop(z) = Rop(0) + &7 (W_W‘;)R/(W)> (2)

c 1 R'(w)— R'(w) 1 \7*
=R ——! —
0+ s (e ) @
Weighted /
quadrature — R(WO) + c ¢ (WO) — R(WO) +CVZ.

domains

R'(wo) 2=t — ¢(wo)

‘wlog taking ¢(0) = wo, ¢’(0) >0
Ysee [Dragnev, Legg & Saff (2022)] for a similar result



Generalized
quadrature
domains

Andrew Graven

Weighted
quadrature
domains

Faber transform method example

If Qe QD|R/‘2 <L> is bounded and s.c. with, ¢ > 0, wy € C “nice”, then®

w—wy

#
Rop(z) = Rop(0) + &7 (W_W‘;)R/(W)> (2)

— Rlw c 1 1 R(w)-R(w) 1
= Rlwo) + R/(WO)CD“’ (W - W w— wp R'(w)
— R(wo) + —=— 0 i)+ az.

R'(wo) 2=t — ¢(wo)

So Q is a preimage of a disk under R.

‘wlog taking ¢(0) = wo, ¢’(0) >0
Ysee [Dragnev, Legg & Saff (2022)] for a similar result

)#(z>
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Faber transform method example

w—wy

If Qe QD|R/‘2 <L> is bounded and s.c. with, ¢ > 0, wy € C “nice”, then®

#
Rop(z) = Rop(0) + &7 (W_W‘;)R/(W)> (2)

_ ¢ o1 1 _RW-Rw) 1 \*
_.L?(WO)JFWWO)Q)“’1 (W—Wo a w — wo : R'(W)) =)
— R(wo) + —=— 0 i)+ az.

R'(wo) 2=t — ¢(wo)

So Q is a preimage of a disk under R. Using
1 1
c= - dw:/1-|R’|2dA
Q

27 Joa T w— wo 0

can show that o = /c.

‘wlog taking ¢(0) = wo, ¢’(0) >0
Ysee [Dragnev, Legg & Saff (2022)] for a similar result
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Faber transform method example

w—wy

If Qe QD|R/‘2 <L> is bounded and s.c. with, ¢ > 0, wy € C “nice”, then®

#
Rop(z) = Rop(0) + &7 (W_W‘;)R/(W)> (2)

_ ¢ o1 1 _RW-Rw) 1 \*
_.L?(WO)JFWWO)Q)“’1 (W—Wo a w — wo : R'(W)) =)
— R(wo) + —=— 0 i)+ az.

R'(wo) 2=t — ¢(wo)

So Q is a preimage of a disk under R. Using
1 1
c= - dw:/1-|R’|2dA
Q

27 Joa T w— wo 0

can show that « = /.  —— Qs a preimage of D /z(R(wp)) under R.10

‘wlog taking ¢(0) = wo, ¢’(0) >0
Ysee [Dragnev, Legg & Saff (2022)] for a similar result
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® boundary evolves with v, o VG4
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Classical Hele-Shaw flow:
e family of domains {Q:}: in plane with smooth boundary
® boundary evolves with v, x VGy (v, =normal velocity, G, = Green
function wrt co)
® e.g. gas bubbles {Q;}: in fluid with steady injection/extraction:

NN

N N

Varchenko & Etingof (1992)
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Classical Hele-Shaw flow:

e family of domains {Q:}: in plane with smooth boundary

® boundary evolves with v, o VG4
function wrt co)

(v, =normal velocity, Go, = Green

® e.g. gas bubbles {Q;}: in fluid with steady injection/extraction:

NN

N N osm O

Varchenko & Etingof (1992)

Deltoid
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Hele-Shaw flow

Classical Hele-Shaw flow:

e family of domains {Q:}: in plane with smooth boundary

® boundary evolves with v, x VGy (v, =normal velocity, G, = Green

function wrt co)

® e.g. gas bubbles {Q;}: in fluid with steady injection/extraction:

NN

<
N N osm O

Varchenko & Etingof (1992)

Remark: Q, € QD(h) = Q. 5t € QD <h(w) n

injection point.

Deltoid

ot
w—wp

), where wy is the
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Finger of water penetrating oil'!

Wiz Saffman-Taylor finger +———  Hele-Shaw cell in channel

quadrature
domains

Recall:
quadrature domain  <———  Hele-Shaw cell

So,
quadrature domain  +——  Saffman-Taylor finger

Problem: oo in boundary

Saffman & Taylor (1958)
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Definition 3.2 (Weighted Abelian QD)

Andrew Graven - \We call a bounded domain Q C C a weighted Abelian quadrature domain wrt the
weights p: Q — R>g and A € Rat(Q°) if 3h = r + AL for r, el € Rat(Q), such

that 1 / fpdA— — yﬁ F(w)h(w)dw
Q 27TI o0

™

S Vf € LY(€2; p). This is denoted by Q € QD,(h).
quadrature
domains
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Definition 3.2 (Weighted Abelian QD)

We call a bounded domain 2 C C a weighted Abelian quadrature domain wrt the
weights p: Q — R>g and A € Rat(Q°) if 3h = r + AL for r, el € Rat(Q), such

that 1 / fpdA— — yﬁ F(w)h(w)dw
Q 27TI o0

™

Vf € LL(R; p). This is denoted by Q € QD,(h).
Residue theorem:

1 b
F(w)h(w)dw =~ ¢ f ) (py) — Zaj/ f(w)A(w)dw
ki J %

2mi o0

(where the aj, b; are the pairs of branch points of L)
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Weighted Abelian QDs

Definition 3.2 (Weighted Abelian QD)

We call a bounded domain 2 C C a weighted Abelian quadrature domain wrt the
weights p: Q — R>g and A € Rat(Q°) if 3h = r + AL for r, el € Rat(Q), such
that 1

1
= /Q fpdA = 5 ygﬂ f(w)h(w)dw

Vf € LL(R; p). This is denoted by Q € QD,(h).

Residue theorem:

1
2mi o0

bj
F(w)h(w)dw =~ ¢ f ) (py) — Zaj/ f(w)A(w)dw
ki J %

(where the aj, b; are the pairs of branch points of L)

Unbounded case is similar.
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o 3o () )

12 hay no attention to the singularity on the boundary...
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Weighted Abelian QD Example

Ifo¢ Qe 65|W|72(h) is s.c, can still obtain a Faber transform formula

h(w) = Lo, (In (@)#> w)|  aDp) =

w ¢(0)

Let aD(1)* € QD 2(h),> a>0, A€ (0,2]

p(z) = a(z + 1)*

2 hay no attention to the singularity on the boundary...
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Ifo¢ Qe 65|W|72(h) is s.c, can still obtain a Faber transform formula

h(w) = Lo, (In (@)#> w)|  aDp) =

w ¢(0)

Let aD(1)* € QD 2(h),> a>0, A€ (0,2]

o@)=atz+ 1 = )= 5o, (in (22 (w)

2 hay no attention to the singularity on the boundary...
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Weighted Abelian QD Example

Ifo¢ Qe 65|W|72(h) is s.c, can still obtain a Faber transform formula

h(w) = Lo, (In (@)#> w)|  aDp) =

w ¢(0)

Let aD(1)* € QD 2(h),> a>0, A€ (0,2]

o(z)=a(z+1) =  h(w)= %% (ln (szr 1

2pay no attention to the singularity on the boundary...
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Weighted Abelian QD Example

Ifo¢ Qe 65|W|72(h) is s.c, can still obtain a Faber transform formula

7 #
h(w) = %% (In (%) ) w)|  aDp) =

Let aD(1)* € QD 2(h),> a>0, A€ (0,2]

w

@)= a1 = )= 2o (i
So if f e LL(aD(1)*; |w|2),

1 f(w) 2 f(w)
_/D W) ga(w) = /O—dw

7r P w2

2pay no attention to the singularity on the boundary...
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Changing variables w — In(w):

aDp(1)}

w — In(w)

ﬁz —dA

(Saffman-Taylor finger)

In(a) + AIn(DD(1))



Caltech  Weighted Abelian QD Example (cont.)

Generalize H H . .
quadra'tur: Changing variables w — In(w): (Saffman-Taylor finger)
domains

Andrew Graven

w — In(w)

ﬁz —dA
Weighted
quadrature
domains

aDp(1)} In(a) + A In(D(1))
Gives
In(a)

1/ fdA = )\/ f(w)dw
T JIn(a)+XIn(D) —o0

For f € LL(In(a) + AIn(D(1)))
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® There are generalizations of Faber transform to multiply connected domains,

but not as straightforward to work with

Characterize general relationship between function space of quadrature
function, h, and that of the Riemann map, ¢ (upcoming)

® he Rat <= ¢ € Rat (classical QDs)

* heRat « ¢ € Rat (Abelian QDs)

® similar correspondences for WQDs with certain weights
Algebraic equations relating coeffs of h and ¢ «——— uniqueness

® Some work by Ameur, Helmer & Tellander (2021)
Characterize boundary behaviour at singular points of metric (upcoming)
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Generalize beyond simply connected domains?

® There are generalizations of Faber transform to multiply connected domains,

but not as straightforward to work with

Characterize general relationship between function space of quadrature
function, h, and that of the Riemann map, ¢ (upcoming)

® he Rat <= ¢ € Rat (classical QDs)

* heRat « ¢ € Rat (Abelian QDs)

® similar correspondences for WQDs with certain weights
Algebraic equations relating coeffs of h and ¢ «——— uniqueness

® Some work by Ameur, Helmer & Tellander (2021)
Characterize boundary behaviour at singular points of metric (upcoming)
Characterize topology of generalized QDs?

® (Classical case: Lee & Makarov (2016)
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That’s all!

Thank you!
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Andrew Graven Q c QD < ¢ ) , C, wo c (C
w — wWp
Briefly:
*3QeQD (wao) iff |wo|2 + 2Re(c) > 2|c|,

e For each wy, c, there is a t, > 0 such that #Q € QD (W—CW()) with A(Q) > t.,
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Upcoming: Characterization of simply connected 1 pt UQDs,

QeQD< ¢ ), c,wg € C

w — wWp
Briefly:
*3QeQD ( CWO) iff |wo|2 + 2Re(c) > 2|c|,

w—

w—wp
® For each t < t,, there is a unique Q with A(Q2) =t (given ¢ and wp)
* {Q,}i, is a Hele-Shaw chain

e If ¢ 20, then 9Q has (3,2)-cusp when A(Q) = t.

® For each wy, c, there is a t, > 0 such that 7Q € QD ( £ ) with A(Q) > t.,
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One point unbounded quadrature domains

Upcoming: Characterization of simply connected 1 pt UQDs,

Briefly:

HQEQD( c

w—wp

For each wy, c, there is a t, > 0 such that #Q € QD ( <

QeQD<

) iff |wo|2 + 2Re(c) > 2|c|,

C),

w — wWp

c,wp € C

W—wW

0) with A(Q) > t,,

For each t < t,, there is a unique Q with A(Q) = t (given c and wy)
* {Q,}i, is a Hele-Shaw chain

If ¢ 20, then 9Q has (3,2)-cusp when A(Q2) = t.

Riemann map:

o(z) = az

zZ— 1

zZ—2y

17

(v(20) = wo)
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3Lee, Lyubich, Makarov & Mukherjee (2018)
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Antiholomorphic dynamics

If Q is a QD, can consider dynamics of Schwarz reflection, {¢°"}, 0 = S.

e.g. the deltoid:

Lee et al. (2018): deltoid S-reflection is the unique conformal mating of z? and
ideal triangle group reflection.

Lee & Makarov (2016): dynamics of S-reflection — sharp QD connectivity bounds

13| ee, Lyubich, Makarov & Mukherjee (2018)



